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NOTE 

Parameterized Solution of One-Dimensional Thermal Diffusion 
with a Heat Source and a Moving Boundary* 

In this note we show how to construct a simple and 
accurate ordinary differential equation (ODE) approxima- 
tion to a one-dimensional, partial differential, thermal diffu- 
sion equation (PDE), where there is both a heat source and 
a moving boundary. The physical problem we use to 
illustrate the method is that of thermal diffusion and 
evaporation of a water drop irradiated by laser light that it 
absorbs, in this case the 10.6 pm emission of a CO1 laser. 
The water drop heats internally and evaporates at the sur- 
face. The problem is to determine the internal drop tem- 
perature profile T(r, t) and radius rd(t) as time evolves, 
where r is the radial coordinate in spherical geometry. The 
problem is spherically symmetric, since we assume that the 
water drop absorbs laser power independently of spatial 
position within the drop (so-called volumetric absorption). 
This is a good approximation if the drop radius is less than 
the wavelength of the laser light as is the case for most cloud 
water drops with respect to the CO, laser wavelength. 
Although we consider spherical geometry, the ideas apply 
to other geometries, for example, cylindrical geometry. 
We begin by describing the model and show how it can be 
solved by a conventional finite difference method. Then a 
parameterized form of the model is presented that is much 
simpler. It is the construction and solution of this model 
that is the main subject of this paper. 

The equations defining the problem are thermal diffusion 
within the drop given as 

dT K, a ,aT - Pwcw~=Pl+~~’ ar2 

and conservation of energy at the drop surface 

47 3 

yp.L$f -4~wdCT(rd)- T,l 

(2) 

* Supported by the U.S. Department of Energy. The U.S. Government’s 1 The values of these parameters are: p, = 1 g/cm2, c,. = 1 cal/(g - K), 
right to retain a nonexclusive royalty-free license in and to the copyright L = 540 cat/g, K,. = 6.0 x lo4 erg/(s - cm - K), K, = 2.39 x 10’ erg/ 
covering this paper, for governmental purposes, is acknowledged. (s-cm-K). 

where this energy is partitioned between vaporization and 
thermal conductivity to the air exterior to the drop: the first 
and second terms on the 1.h.s. of Eq. (2) respectively. The 
quantities pw, c,, L, and K, are the mass density, specific 
heat at constant volume, latent heat of vaporization, and 
the thermal conductivity of water, respectively; K, is the 
thermal conductivity of air, T, is the ambient air tem- 
perature far from the drop, and p, is an energy source term 
that depends on the laser power, the absorption efficiency, 
and is determined from Mie theory [ 11.’ We take pI to be 
a positive constant. The water drop radius, rd, is a function 
of time whose evolution is determined by Eq. (2), which 
expresses energy flow balance at the drop surface. To com- 
plete the system a boundary condition must be specified for 
Eq. (1) at radius rd. We choose the simple constraint 
T(rd) = T,, where Tb is the boiling point of water and is a 
constant. (Much more complicated boundary conditions 
can be constructed by considering the detailed kinetics of 
water vapor at the drop surface [2, 33. This will not 
fundamentally change the following discussion.) Since the 
domain of Eq. (1) is 0 d r d rd(t), we perform a variable 
transformation to a fixed coordinate x defined by x = r/rd (t) 
so that 0 Q x B 1 independent of time [4]. To this end we 
use 

(34 

x drd a _--- 
rd dt ax’ 

to transform Eqs. (1,2). These become 

dT 
Pwcw,,t= Pr+Pwc, 

(3b) 

+ 
K, 8 aT 

---2- 
r:x2 ax ax’ 

aT 
~,(Td,)+%vj~ r=, I 1 , (5) 
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where henceforth it is understood that the partial perature on the axis and the exponent, to determine. This is 
derivatives with respect to time are taken at constant values a trial function approximation to the solution of Eqs. (4), 
of x. Because of the moving boundary Eqs. (4) (5) are, (5). It has three desirable features. First, it allows for the 
when considered together, nonlinear in both T and rd. correct steady state solution of the diffusion equation to be 
When transformed to the fixed coordinate x an advective achieved; second, it allows for transient diffusion in an 
term is added, given by the second term on the r.h.s. of approximate way; and finally, it is simple to integrate 
Eq. (4) to what was otherwise a diffusion equation. analytically. With this form, Eq. (5) becomes 

For the parameters in Eqs. (1 ), (2) that are physically 
relevant to water and for significantly fast heating rates we 
find that the drop temperature can increase much faster 
than the radius shrinks due to evaporation, at least until a 
slowly evolving near steady state temperature profile is 
established that changes only in response to changes in rrl. 
So for a small timestep, determined by following T(x, t) 
accurately in Eq. (4), rd is very nearly constant. This makes 
the numerical solution of Eqs. (4) (5) quite straightforward. 
We simply difference Eq. (4) for T(x, t) fully implicit in time 
and use second-order accurate centered spatial differencing 
in x. This gives a tridiagonal matrix that is easily inverted by 
elimination. We assume known values for the coefficients rd 
and dr,/dt at the beginning of each timestep. These are 
iterated to convergence for each timestep by using Eq. (5) 
given a new estimated value for T(x, t). This works well 
because rd(t) is slowly changing. The solution of 
Eqs. (4) (5) shows three evolution regimes. First there is a 
rapid rise in T(x, t) with rd changing by only a small 
amount. Next T(x, t) and rd(t) evolve slowly on the same 
timescale. Finally, a true steady state is achieved when rd 
becomes small enough that thermal conduction to the air 
balances absorbed laser power so that the r.h.s. of Eq. (5) 
equals zero. 

p,,s4=2 K,(T~-T,)-I~,.~(T,-T,) . 
1 

Obviously the approximate solution, Eq. (6), can satisfy 
Eqs. (4), (5) only in some integral sense. For accomplishing 
this integral we use as a weighting function the monomial 
xJ, wherej is any positive integer. This simple choice is made 
because there is no characteristic spatial scale length, 
relative to x, in this problem. We define for a given xi the 
quantity e, as 

e,=(j+l)s’ Txjdx-T,, 
0 

4To - Td 
= (n+j+ 1)’ (8) 

where the second part of this expression results from using 
Eq. (6). In defining ej we have choosen the (j + 1) factor as 
a convenient normalization and have substracted T, so that 
if T is constant at the boundary value eJ = 0. With this 
definition of ej, Eq. (4) can be transformed, with the help of 
Eq. (7) to eliminate dr,/dt, to obtain 

The purpose of this note is to show how a simple ODE 
approximation to Eqs. (4), (5) can be constructed. The 
point is that, although for a single water drop these 
equations are simple enough to solve, for a cloud where a 
distribution of drop sizes exists that may vary with spatial 
location the solution of Eqs. (4), (5) for a large set of drop 
types becomes computationally intensive. We need an 
approximation that follows all stages of evolution of the 
drop accurately. Particularly important is the fast initial 
temperature rise in the center, since if the drop heats to 
about 305°C a spontaneous phase transition to vapor 
occurs and the drop explodes [S]. We wish to accurately 
predict this onset for a distribution of initial drop sizes typi- 
cal of a given cloud. It is natural to choose a parametrized 
form for T(x, t) that includes the steady state solution of 
Eqs. (4), (5) and also allows for representation of the 
transient boundary layer associated with uniform heating. 
Thus we choose 

-(n+ j+ 1) K%,ej 1 ej 

_(j+l)(n+l)(n+j+l).~, 
(n+j-1) ze’. (9) 

Since there are only two parameters to determine, To and n, 
only two values ofj need to be chosen.* Thus Eq. (9) is used 
twice for the moments e, and e2, whence 

(To - Td, e’=& 
“‘=& 

(loa) 

(To - Td. (lob) 

T(x, t) = T,,(t) + (T, - To(t)) x”(‘) (6) 

which automatically satisfies the boundary condition at 
r = rd. There are two parameters, T,(t) and n(t), the tem- 

* The best choice has been found to be j = 1 and j = 2, although the 
results are not overly sensitive to this. Obviously, two large values of j lead 
to poorer results since the two monomials are then not very independent. 
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FIG. 1. Temperature (“C) vs radius (micronstsolid curve, PDE system; dashed curve, ODE system: (a) at 0.25 PCS; (b) at 5.0 fits. 

Inverting Eqs. (10) gives 

(2e, - 34 
PI= (e*-e,) ’ 

To= Tb+@%,. (1 la), (lib) n 

We thus have three ODES to solve, Eq. (7) and Eq. (9) for 
(j=l) and (j=2), where Eqs.(lO) and (11) serve as 
constitutive expressions relating (e, , e,), to (To, n) and vice 
versa. These equations may be conveniently solved by any 
numerical scheme. We require as initial conditions some 
value of n > 2 and T,, > T,. Use of a time dependent 
boundary condition, Th(f) say, in place of a constant T,, in 
Eq. (4) will simply introduce terms involving aT,/at and 
TJt) that can be evaluated given an additional expression 
for determining the time evolution of T,,(l) (see Ref. [a]). 

In Figs. (1) and (2) we show a comparison of solutions of 
Eqs. (4), (5) and Eqs. (7), (9) for an initial water drop radius 
of 1.0 pm, an initial temperature of 25°C and a constant 
laser flux of 1.0 MW/cm’. We choose T,= 25°C and 
Tb = 100°C. Equations (4) (5) are solved by implicit time 
differencing as described previously; Eqs. (7), (9) are solved 
by the common fourth-order Runge-Kutta scheme [6], 
where To = lOO.l”C and n = 2 initially. A fixed timestep 
Ar = 0.01 ps is used. Figure 1 shows the temperature versus 
radius across the drop. Part (a) is at 0.25 /.Ls, an early time 
where the temperature profile is still developing and is 
relatively flat in the drop center; part (b) is at 5.0 ps, where 
a parabolic temperature profile which changes only in 
response to the shrinking drop radius has been established. 
The solid curve is the solution to the PDE system, Eqs. (4), 
(5); the dotted curve shows the solution to the ODE 

approximation, Eqs. (7), (9). Note that the drop radius has 
changed very little in part (a). Figure 2 shows the tem- 
perature versus time at the drop center for the two sets of 
equations. As seen, the approximation of the solution of the 
ODE system to the primitive PDE is extremely good. 

An explicit solution of Eqs. (7) and (9) leads to a stability 
constraint that is exactly analogous to that obtained in 
explicitly solving Eq. (4) for thermal diffusion except that 
the drop radius in the ODE replaces the grid spacing in the 
PDE. This is readily seen from the last term on the r.h.s. of 
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FIG. 2. Temperature (“C) vs time (p(s) at the drop center: solid curve, 
PDE system; dashed curve, ODE system. 
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FIG. 3. Implicit time differencing-solid curve, PDE system; dashed curve, ODE system: (a) temperature (“C) vs radius (pm) at 4.8 ps, dt = 0.6 ps; 
(b) temperature (“C) vs time (ps) at the center of the drop. 
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Eq. (9). We find for the explicit scheme the usual stability 
restriction 

2(nfl)(n+2) rc,dt <C 
n p,.c,.ry ’ (12) 

where for the steady state value of n = 2 the constant C is 
found empirically to be about 0.9. Since the drop radius is 
much greater than any reasonable grid spacing across that 
radius this may not be a problem. However, if due to 
evaporation the drop radius becomes small implicit time 
differencing on terms linear in ej in Eq. (9) is desirable.3 

In Fig. 3 we show results using implicit time differencing 
of the ODE system in the simple manner just described for 
the same parameters as before except that now the timestep 
dt is 0.6 ps, a factor of more than 10 above the explicit 
stability threshold. To enhance nonlinear stability we 
require that n > 2 at the end of each timestep by setting it 
equal to two if it goes below it. We also require n 6 20 to 
ensure that e, and e2 are sufficiently independent. In Fig. 3 
the solid curve is the PDE solution while the dashed curve 
is the result of solving Eqs. (7), (9). Part (a) shows tem- 
perature versus radius at 4.8 ps; part (b) gives the tem- 
perature at the center of the drop versus time. It is seen that 
stability has been achieved and that both curves agree fairly 
well with each other. However, by comparison to Figs. 1 
and 2, accuracy has been substantially degraded. This is to 
be expected since there are only 12 timesteps in 6 ps over 

’ T,he steady state solution of Eqs. (I), (2) or Eqs. (7), (9) is n = 2, 
r0 = T, + (K,/~K,)( Th - r,), and rd= [(~K,/JJ,)( T, - To)]“* so that this 
restriction on At is readily evaluated. 

which the temperature profile changes significantly. Thus, a 
variable timestep set to allow no more than some minimum 
change in To and rd on a given integration step should be 
implemented. A fixed timestep has been used here for clarity 
in quantifying the numerical results. It is found that the 
implicit differenced ODE approximation described above 
reproduces the exact steady state solution with no restric- 
tion on timestep, as expected. 

We wish to note that the slow parametric change of the 
temperature profile after the initial fast transient as seen in 
Fig. 2 after 2 ps can be followed directly by setting 
de,/dc = 0 in Eq. (9) and determining To(t) and n(t) 
algebraically, given rd. Then from Eq. (7) dr,/dt is known 
and rd can be evolved with time and updated values of To 
and n can be obtained. That is, given a monotone decreasing 
sequence of numbers for rd, Eq. (9) determines a corre- 
sponding sequence of numbers for To and n. Then Eq. (7) 
determines a set of time labels to associate with these 
sequences. 

In summary, we have shown how a simple and very 
accurate ODE approximation to a one-dimensional 
PDE may be constructed by utilizing a generalization of 
the PDE’s analytically known steady state solution. 
Appropriate moments of this solution were then taken to 
achieve an ODE model. Thus the correct steady state 
solution is automatically obtained by the approximation, 
Although the PDE considered, a thermal diffusion equation 
with a heat source and constant coefficients, is linear if the 
moving boundary is fixed, the ODE representation is highly 
nonlinear. The ODE representation exhibits the same linear 
stability restriction when solved by an explicit method as 
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the original PDE, with the characteristic physical system 2. E. J. Caramana, R. B. Webster, G. P. Quigley, and R. L. Morse, J. Appl. 
dimension playing the role of a spatial grid size. However, Phys. 70,460 1 ( 199 1). 

this is readily overcome by implicit differencing. Although 3. F. Williams, Znr. J. Heat Mass Transf 8, 575 (1965). 

we have considered spherical geometry the procedure 4. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford. 

described will carry over directly to cylindrical geometry. 1975). 

The basic ideas should be relevant to many physical 5. B. S. Park and R. L. Armstrong, Appl. Opt. 28, 3671 (1989). 

problems where an accurate, simple, and fast approxima- 6. F. B. Hildebrand, Advanced Calculus for Applications (Prentice-Hall. 

tion to a more complicated physical system is required. Englewood Cliffs, NJ, 1962), p. 104. 
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